If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+30t-350=0
a = 1; b = 30; c = -350;
Δ = b2-4ac
Δ = 302-4·1·(-350)
Δ = 2300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2300}=\sqrt{100*23}=\sqrt{100}*\sqrt{23}=10\sqrt{23}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{23}}{2*1}=\frac{-30-10\sqrt{23}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{23}}{2*1}=\frac{-30+10\sqrt{23}}{2} $
| X+5=x+19 | | 26+(17/x)=-42 | | 3n+-3n=0 | | 27=3x+3(-2x+4) | | x+163=14x-13 | | 3a+11=5a | | (1/2x)+(1/2)=6 | | 9v+9v-13v+2v-3=39 | | 27=3x+3(-2x+4 | | 3(m+9)=63 | | 6x+3(4x-8)=-132 | | 7c+9c+10c-11c-3c-11=1 | | 4k-3k+5k=96 | | 28x+11=129 | | 7y2−14y=0 | | -4x+2(-3x+5)=80 | | 2(x+20)=14 | | 1/5x+7=-3 | | 2x+8=18* | | 2n+3n+6=43 | | 20v+5v-14v-9v=14 | | 4(f-71)=60 | | 12+3a=6a | | 8x+9=6+6x | | 7z-9=3z+31 | | 2(x+20=14 | | 6h+4h-9h=19 | | 23x+5=-12x2 | | -5x+3(x+4)=-10 | | 5x+3x-2x-4x=20 | | (100000-15x)^(1/3)=0 | | 60n^2=540 |